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Let (X, ||-||) be a Banach space and M a closed subset. Without loss of
generality we will assume that the zero vector 0 belongs to M. Given a
point pe X by J(p, M) we denote the distance from p to M, ie,
o(p, M)=inf{|z— p||: ze M}. Following notations from [2], Byl(p)
stands for {ze M : |z— p| =d(p, M)}, the set of the best M-approxima-
tions. We also introduce M,={zeM: |z||<2|p|}. Clearly B,(p)=
{zeM:|z—pll=0(p, M)} =M, as 0 M.

A mapping ¢: M — M is called nonexpansive if |p(x)—@(py)| < ||x— y|
holds for all x, ye M. Given an associative semigroup S, we say that a
family € ={T,:s€S} of nonexpansive mappings defined on a common
domain M < X is an antirepresentation of S if for each pair s,, s, €S we
have Ty, o T,,=T,,,. A point x € M is called a common fixed point of S (we
skip “of ©” if the context is clear) if 7,x =x holds for every s€ S. The set
of all common fixed points of & belonging to M will be denoted
by F(S, M). A subset K< M is called € invariant if T(K)< K holds for
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every s. If the set K does not contain any & invariant and closed subsets,
other than K and the empty set, we will say that K is minimal.

A question when (M, €) has a common fixed point has been addressed
in many articles (see [2, 4-6, 8-10]). It is well known that if & is com-
mutative and M is convex and norm compact, then a common fixed point
does exist. This follows from the Schauder fixed point theorem. If M is a
convex, closed, and bounded subset of a Hilbert space (or a uniformly con-
vex Banach space) and S=N is the semigroup of natural numbers, then a
common fixed point exists by [3]. However [ 1] provides an example of a
weakly compact set M = L' and a nonexpansive isometry ¢: M — M which
is fixed point free. The main goal of this paper is to provide sufficient con-
ditions guaranteeing that the best approximation is achieved in the domain
of common fixed points, i.e., F(S)n B, p)=F(S, By(p)) # . This idea
was investigated by Brosowski [5], Smoluk [10], Habiniak [8], and
others. Their efforts were recently summarized in [2] by M. A. Al-Thagafi.
Namely it has been proved that

THEOREM 1. Let X be a normed linear space and I and T be self-maps
of X with a common fixed point p of I and T. Let 0 € M be closed and convex
in X and T(M,) = I(M)< M. Suppose that I is linear and nonexpansive on
M,, |Ix—p|=Ix—p| for all xeM, I and T commute on M,, T is
Inonexpansive on M, U {p}, and on of the following two conditions is
satisfied:

(a) I(M,)"" is norm compact

(b) T(M,)"Vis norm compact and T is linear on M,.
Then:

(1) By p) is nonempty, closed, and convex;

(i1)  T(Bpu(p)) SI(Bup(p)) = Bulp), and
(1) I and T have a common fixed point in B, p).

In the end of the paper [2] the author raised the question whether
instead of (a) or (b) we might simply assume that 7(M p)”'” is norm com-
pact. We answer this question in the affirmative. We generalize this
theorem removing redundant restrictions on / and 7. We discuss its ver-
sions for the weak (and weak*) topology as well.

Remark 1. In the above mentioned Theorem 1, the assumptions that /
and T are linear on M, mean that these mappings are simply the restric-
tions of linear maps. In our last result, Theorem 5, we will note that it is
enough to assume that they are affine. This clarifies the situation as
linearity of 7 and T requires that M, should be at least a vector subspace.
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In the following we will apply a fixed point theorem which was recently
proved by one of the authors. In order to make the notations and concepts
clear, let us recall a few paragraph from [4]. We shall assume that besides
the norm ||-| our space X is endowed with a Hausdorff topology T, weaker
than (or equivalent to) the norm topology. A standard example of such a
triple (X, |1, ) is when T is the corresponding weak topology on X or
the weak* topology if X is a dual Banach space.

Now let us assume that the semigroup S is equipped with a Hausdorff
topology such that for each fixed ae S the mappings s — s¢ and s— sa
from S to S are continuous (i.e., S is a semitopological semigroup). The
antirepresentation & is said to be T continuous if the mapping

SxM>(s,x)—>T(x)eM

is jointly continuous when M has the T topology. We note that if T
restricted to M is the norm topology and S has the discrete topology, then
any nonexpansive antirepresentation of S on M is jointly continuous.

The Banach algebra of all bounded real valued functions on S endowed
with the supremum norm | .||, is denoted by C,(S). Given he C,(S) and
aeS we define h,(t)=h(ta), which obviously belongs to C,(S) and the
operation /i — h, is a linear contraction on C,(S). We say that he C,(S) is
right uniformly continuous if the mapping

Saal—>ha E(Cb(S)a H '”sup)

is continuous, and by RUC(S) we denote the Banach subalgebra of all such
functions &. A linear functional 2 on RUC(S) is called a mean if A(h)>=0
for all nonnegative 2 and A(1)=1. A mean 1 is said to be right invariant
if A(h,) = A(h) holds for all he RUC(S) and a € S. The semigroup S admit-
ting right invariant means are called RUC right amenable.

The reader is referred to [ 7] for more details and information concern-
ing amenability. We remark that regardless of the existing topology on S
(one can even take the discrete one), all commutative semigroups have
means which are both left and right invariant (S is amenable).

A probability measure u on (M, #= ), where #+ 5, denotes the Borel o
algebra generated by the topology T restricted to M, is said to be
S-invariant if for every 4 € #z 5, and se S one has u(T;'(A4))=u(A4). In
particular x4 defines an invariant mean on the subspace of C,(S) spanned
by the functions of the form S>s— h(T(x)), where & is a bounded and T
continuous function on M and x € M is fixed but arbitrary. The family of
all S-invariant probability measures concentrated on a set K< M is
denoted by P(S, K). The topological support (if it exists) of u is the
smallest norm closed set of full measure x and it is denoted by supp(u).
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It was recently proved (compare Lemma | and Theorem 1 in [4]) that

Lemma 1. (a) Let M be a T-closed subset of a Banach space
(X, [[-Il, T) and S={T,:s€S} be a nonexpansive T continuous antirepre-
sentation of S on M, and let S be RUC right amenable. If (O1(x)=
{T(x):seS}* is T compact, then it carries a S invariant probability
measure (.

(B) If, moreover, Oz (x) is norm separable and for each y € M the func-
tion Mz ||z—y||eR is T lower semicontinuous, then for every element
y from supp(u) the orbit O (y)={T(y):seS}" is norm compact and
minimal, supp(p) is & invariant, and {T,|ppu: SES} is a collection of
invertible isometries on supp(u).

(y) If, in addition, M is convex and T compact, then F(&, M) # .

Remark 2. The assumption that functions z+ ||z — y| are T lower
semicontinuous implies that %5 ,,= %, | 5. This is naturally satisfied if T
is the weak or weak* topology.

Applying the above result we immediately have:

THEOREM 2. Let M be a closed, convex subset of a Banach space
(X, -1, T), p¢ M be arbitrary, and S={T,:se S} be a nonexpansive and
T continuous antirepresentation of S on M L {p}. Suppose that M >z
|z— yll is T lower semicontinuous for every fixed ye M L {p} and S is RUC
right amenable. If p is a common fixed point and for some r > d(p, M) the
set C,={zeM: |z—p| <r} is T compact, then

(1) Byl p) is nonempty and convex.

If, moreover, C, is norm separable, then
(i) (S, Bpdp)) # .

Proof. The convex and nonempty sets C, decrease when r~\d(p, M)
and they are eventually T compact. Therefore

D#Bu(p)= ()  C,=Cspn

r>d(p, M)

is T compact and convex. Property (ii) follows easily from (y) because
B,,(p) is separable, convex, and T compact. |

Remark 3. 1t has been noticed in [4] that if every finitely generated
subsemigroup of S is right amenable (this holds if S is commutative) then
the separability assumption imposed on C, in Theorem 2 is redundant if T
is the weak topology.
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Now we are in a position to approach the question raised in [2]. We
start with:

THEOREM 3. Let M be a T closed subset of a Banach space (X, |-|, T),
let the family S={T,:seS} be a nonexpansive and T continuous
antirepresentation of S on M, and let the functions M>zw ||z— y| be T
lower semicontinuous for all y e M. If there exists s, € S such that

M, =T,(M)*

is T compact and T;oT(x)=T,oT(x) holds or all s, te S and all xe M,
then P(S, M) # (. Moreover, By/(p) is nonempty and it carries a &
invariant probability measure.

Proof. Let us denote
Sy ={s50: 568} U {50}.

Clearly it is a semitopological subsemigroup of S (with the inherited topol-
ogy) and the antirepresentation S,={7,:s€S,} is T continuous. We
notice that for every se€.S one has

T (M) =T, (T(M)* < Ty (M) = M,.

550 50

This implies that the set {T,(x):s€ Sy, xe M} T is T compact and S,
invariant. We have already mentioned that commutative semigroups are
amenable. Therefore, by Lemma 1(«), there exists an &, invariant prob-
ability measure ,u which is concentrated on M,. We have u(T (A))
u(A) and u(T Y(4))=pu(A) for all seS and all Ae By m Now for
arbitrary s €S and Borel 4 = M, we have

W(T 7N A) =T 7N (A) 0 My) = (T (T 7 H(A) M)

50

T T A) M) =pu({xeM, :T,oT,(x)eA})

S0

{xeM, T, oT(x)eA})=pu({xeM,: Ty(x)eA})

Hence p is & invariant. This proves (J # P(S, M) = P(Sy, My).

In order to show that there are & invariant measures concentrated on
B,/ p), we first notice that C, n M, are nonempty, T compact, and S
invariant for every r>d(p, M). Therefore their intersections form a non-
empty, T compact, and & invariant subset of B,,(p). Now it is enough to
repeat the arguments from the above. |
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The next result is a two-fold generalization of Theorem 4.2 from [2].
We eliminate linearity assumptions imposed on 7 and 7 and also extend
Al-Thagafi’s results to more general (nonmonothetic) semigroups.

THEOREM 4. Let M be a T closed convex subset of a Banach space
(X, -1, T) and S={T,:s€S} be a nonexpansive and T continuous
antirepresentation of S on M. Suppose that for some sy,€S the set
M,=T,(M)* is T compact, norm separable, and TyoT[(x)=T,oTx)
holds for all s, te S and all xe M. Then F(S, By p)) # .

Proof. 1t has already been noticed that B, p) # J is convex, T closed,
and € invariant. Let ¢ be the family of all T closed, convex nonempty
subsets K of B,,(p) which are & invariant. It follows from the ¥ compact-
ness of M, n B,(p) that Kuratowski-Zorn’s Lemma is applicable and
therefore there exists a minimal element K, in 2. In the same way as in
the proof of Theorem 1 in [4], we obtain that & # (%, By(p))2 Xo.
Now if s€ S is arbitrary, then

Toxo=T,0Tyxqg=T, oT,xq=T,Xo=Xo.

550

In particular F(S, By(p)) =F(S;, By(p) # . |

The following result provides an explicit answer to the question raised in
[2]. Here T is the norm topology. Because the commutativity always
guarantees amenability (even if the topology on S, is discrete), we thus
deal actually with a “discrete x norm” continuous antirepresentation on
M. In particular, all conditions of Theorem 4 are fulfilled. We have:

COROLLARY. Let M be a closed, convex subset of a Banach space
(X, ||-1l) containing the zero vector, pe X\M, and let S={T,:s€S} be a
nonexpansive antirepresentation of a (discrete) semigroup S on MU {p}
such that p € F(S). If there exists sq € S such that My =T,(M,)""! is norm
compact and T, o Tyx)= T, T[x) holds for all s, te S and x e M, then

(1) Buylp)# D is closed, convex and S invariant,
(1) F(S, Bp(p)) # .

Proof. (i) is a part of our Theorem?2 and (ii) follows from
Theorem 4. |

Linearity conditions imposed on / and 7 in [2] guarantee that the
action of the semigroup generated by mappings /, T is affine. Hence it is
weakly continuous. We show that the linearity condition imposed on 7T in
Theorem 1(b) may be replaced by weak continuity. We have:
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THEOREM 5. Let (X, ||-|) be a Banach space, 0 M be a convex and
norm closed subset of X, pe X\M, and S={T,:se€S} be a weakly con-
tinuous, nonexpansive antirepresentation of a (discrete) semigroup S on
M U {p} such that p is a common fixed pont. Suppose that for some s, € S
we have

(a) T, is affine on M,

(b) T(M,)"=M, is weakly compact,

(¢) TyoT x)=T,°Tyx) holds for all s, te S and xe M,.
Then

(1) D #Bylp) is closed and convex,
(i1) T Balp)) S Bulp) for every seS,
(iii)  F(S, Bpdp)) # .

Proof. (i) can be proved in a similar way as in Theorem 2 and (ii)
follows from nonexpansiveness. To prove (iii), we again introduce the semi-
group Sy ={ss¢: € S} U {so}. The weakly compact set M, is S-invariant
and the corresponding antirepresentation &, restricted to M, is com-
mutative. The same properties are enjoyed by the S-invariant subset
K=T,(By(p))” =M, which is convex as T, is affine. It follows from
Lemma 1 that the set K has a €, common fixed point x,. By an analogous
argument as we have used in the proof of Theorem 3, we obtain

TS‘XO = Ts °© S()XO = Tso ° TS‘XO = T x() = xO

550

for all se S. In particular F(S, By(p)) =F(Sy, Bpy(p)) # . |

Remark 4. Finally we want to emphasize that in the last theorem we
do not need to assume the norm separability of M. A detailed explanation
can be found in the last few paragraphs of [4]. It also follows from [4]
that Theorem 5 has its “weak* version.” However, in this case the norm
separability of M, has to be restored. It is still an open question (see [4]
Problem) whether the norm separability condition is essential in Lemma 1
(y) if T is the weak™* topology.
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