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Let (X, & }&) be a Banach space and M a closed subset. Without loss of
generality we will assume that the zero vector 0 belongs to M. Given a
point p # X by $( p, M) we denote the distance from p to M, i.e.,
$( p, M)=inf[&z& p& : z # M]. Following notations from [2], BM( p)
stands for [z # M : &z& p&=$( p, M)], the set of the best M-approxima-
tions. We also introduce Mp=[z # M : &z&�2 &p&]. Clearly BM( p)=
[z # M : &z& p&=$( p, M)]�Mp as 0 # M.

A mapping .: M � M is called nonexpansive if &.(x)&.( y)&�&x& y&
holds for all x, y # M. Given an associative semigroup S, we say that a
family S=[Ts : s # S] of nonexpansive mappings defined on a common
domain M�X is an antirepresentation of S if for each pair s1 , s2 # S we
have Ts1

b Ts2
=Ts2s1

. A point x # M is called a common fixed point of S (we
skip ``of S'' if the context is clear) if Ts x=x holds for every s # S. The set
of all common fixed points of S belonging to M will be denoted
by F(S, M). A subset K�M is called S invariant if Ts(K)�K holds for
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every s. If the set K does not contain any S invariant and closed subsets,
other than K and the empty set, we will say that K is minimal.

A question when (M, S) has a common fixed point has been addressed
in many articles (see [2, 4�6, 8�10]). It is well known that if S is com-
mutative and M is convex and norm compact, then a common fixed point
does exist. This follows from the Schauder fixed point theorem. If M is a
convex, closed, and bounded subset of a Hilbert space (or a uniformly con-
vex Banach space) and S=N is the semigroup of natural numbers, then a
common fixed point exists by [3]. However [1] provides an example of a
weakly compact set M�L1 and a nonexpansive isometry .: M � M which
is fixed point free. The main goal of this paper is to provide sufficient con-
ditions guaranteeing that the best approximation is achieved in the domain
of common fixed points, i.e., F(S) & BM( p)=F(S, BM( p)){<. This idea
was investigated by Brosowski [5], Smoluk [10], Habiniak [8], and
others. Their efforts were recently summarized in [2] by M. A. Al-Thagafi.
Namely it has been proved that

Theorem 1. Let X be a normed linear space and I and T be self-maps
of X with a common fixed point p of I and T. Let 0 # M be closed and convex
in X and T(Mp)�I(M)�M. Suppose that I is linear and nonexpansive on
Mp , &Ix& p&=&x& p& for all x # M, I and T commute on Mp , T is
I-nonexpansive on Mp _ [ p], and on of the following two conditions is
satisfied:

(a) I(Mp)& }& is norm compact

(b) T(Mp)& }& is norm compact and T is linear on Mp .

Then:

(i) BM( p) is nonempty, closed, and convex;

(ii) T(BM( p))�I(BM( p))�BM( p), and

(iii) I and T have a common fixed point in BM( p).

In the end of the paper [2] the author raised the question whether
instead of (a) or (b) we might simply assume that T(Mp)& }& is norm com-
pact. We answer this question in the affirmative. We generalize this
theorem removing redundant restrictions on I and T. We discuss its ver-
sions for the weak (and weak*) topology as well.

Remark 1. In the above mentioned Theorem 1, the assumptions that I
and T are linear on Mp mean that these mappings are simply the restric-
tions of linear maps. In our last result, Theorem 5, we will note that it is
enough to assume that they are affine. This clarifies the situation as
linearity of I and T requires that Mp should be at least a vector subspace.
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In the following we will apply a fixed point theorem which was recently
proved by one of the authors. In order to make the notations and concepts
clear, let us recall a few paragraph from [4]. We shall assume that besides
the norm & }& our space X is endowed with a Hausdorff topology T, weaker
than (or equivalent to) the norm topology. A standard example of such a
triple (X, & }&, T) is when T is the corresponding weak topology on X or
the weak* topology if X is a dual Banach space.

Now let us assume that the semigroup S is equipped with a Hausdorff
topology such that for each fixed a # S the mappings s � sa and s � sa
from S to S are continuous (i.e., S is a semitopological semigroup). The
antirepresentation S is said to be T continuous if the mapping

S_M % (s, x) [ Ts(x) # M

is jointly continuous when M has the T topology. We note that if T
restricted to M is the norm topology and S has the discrete topology, then
any nonexpansive antirepresentation of S on M is jointly continuous.

The Banach algebra of all bounded real valued functions on S endowed
with the supremum norm & }&sup is denoted by Cb(S). Given h # Cb(S) and
a # S we define ha(t)=h(ta), which obviously belongs to Cb(S) and the
operation h � ha is a linear contraction on Cb(S). We say that h # Cb(S) is
right uniformly continuous if the mapping

S % a [ ha # (Cb(S), & }&sup)

is continuous, and by RUC(S) we denote the Banach subalgebra of all such
functions h. A linear functional * on RUC(S) is called a mean if *(h)�0
for all nonnegative h and *(1)=1. A mean * is said to be right invariant
if *(ha)=*(h) holds for all h # RUC(S) and a # S. The semigroup S admit-
ting right invariant means are called RUC right amenable.

The reader is referred to [7] for more details and information concern-
ing amenability. We remark that regardless of the existing topology on S
(one can even take the discrete one), all commutative semigroups have
means which are both left and right invariant (S is amenable).

A probability measure + on (M, BT, M), where BT, M denotes the Borel _
algebra generated by the topology T restricted to M, is said to be
S-invariant if for every A # BT, M and s # S one has +(T &1

s (A))=+(A). In
particular + defines an invariant mean on the subspace of Cb(S) spanned
by the functions of the form S % s � h(Ts(x)), where h is a bounded and T
continuous function on M and x # M is fixed but arbitrary. The family of
all S-invariant probability measures concentrated on a set K�M is
denoted by P(S, K). The topological support (if it exists) of + is the
smallest norm closed set of full measure + and it is denoted by supp(+).
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It was recently proved (compare Lemma 1 and Theorem 1 in [4]) that

Lemma 1. (:) Let M be a T-closed subset of a Banach space
(X, & }&, T) and S=[Ts : s # S] be a nonexpansive T continuous antirepre-
sentation of S on M, and let S be RUC right amenable. If OT (x)=
[Ts(x): s # S]T is T compact, then it carries a S invariant probability
measure +.

(;) If, moreover, OT (x) is norm separable and for each y # M the func-
tion M % z [ &z& y& # R is T lower semicontinuous, then for every element
y from supp(+) the orbit O& }&( y)=[Ts( y): s # S]& }& is norm compact and
minimal, supp(+) is S invariant, and [Ts | supp(+) : s # S] is a collection of
invertible isometries on supp(+).

(#) If, in addition, M is convex and T compact, then F(S, M){<.

Remark 2. The assumption that functions z [ &z& y& are T lower
semicontinuous implies that BT, M=B& }&, M . This is naturally satisfied if T
is the weak or weak* topology.

Applying the above result we immediately have:

Theorem 2. Let M be a closed, convex subset of a Banach space
(X, & }&, T), p � M be arbitrary, and S=[Ts : s # S] be a nonexpansive and
T continuous antirepresentation of S on M _ [ p]. Suppose that M % z [
&z& y& is T lower semicontinuous for every fixed y # M _ [ p] and S is RUC
right amenable. If p is a common fixed point and for some r>$( p, M) the
set Cr=[z # M : &z& p&�r] is T compact, then

(i) BM( p) is nonempty and convex.

If, moreover, Cr is norm separable, then
(ii) F(S, BM( p)){<.

Proof. The convex and nonempty sets Cr decrease when rz$( p, M)
and they are eventually T compact. Therefore

<{BM( p)= ,
r>$( p, M)

Cr=C$( p, M)

is T compact and convex. Property (ii) follows easily from (#) because
BM( p) is separable, convex, and T compact. K

Remark 3. It has been noticed in [4] that if every finitely generated
subsemigroup of S is right amenable (this holds if S is commutative) then
the separability assumption imposed on Cr in Theorem 2 is redundant if T
is the weak topology.
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Now we are in a position to approach the question raised in [2]. We
start with:

Theorem 3. Let M be a T closed subset of a Banach space (X, & }&, T),
let the family S=[Ts : s # S] be a nonexpansive and T continuous
antirepresentation of S on M, and let the functions M % z [ &z& y& be T
lower semicontinuous for all y # M. If there exists s0 # S such that

M>=Ts0
(M)T

is T compact and Ts b Tt(x)=Tt b Ts(x) holds or all s, t # S and all x # M> ,
then P(S, M>){<. Moreover, BM( p) is nonempty and it carries a S
invariant probability measure.

Proof. Let us denote

S>=[ss0 : s # S] _ [s0].

Clearly it is a semitopological subsemigroup of S (with the inherited topol-
ogy) and the antirepresentation S>=[Ts : s # S>] is T continuous. We
notice that for every s # S one has

Tss0
(M)T=Ts0

(Ts(M))T�Ts0
(M)T=M> .

This implies that the set [Ts(x): s # S> , x # M]T is T compact and S>

invariant. We have already mentioned that commutative semigroups are
amenable. Therefore, by Lemma 1(:), there exists an S> invariant prob-
ability measure + which is concentrated on M> . We have +(T &1

s0
(A))=

+(A) and +(T &1
ss0

(A))=+(A) for all s # S and all A # B& }&, M . Now for
arbitrary s # S and Borel A�M, we have

+(T &1
s (A))=+(T &1

s (A) & M>)=+(T &1
s0

(T &1
s (A) & M>))

=+(T &1
s0

(T &1
s (A)) & M>)=+([x # M> : Ts b Ts0

(x) # A])

=+([x # M> : Ts0
b Ts(x) # A])=+([x # M> : Tss0

(x) # A])

=+(T &1
ss0

(A))=+(A).

Hence + is S invariant. This proves <{P(S, M)=P(S> , M>).
In order to show that there are S invariant measures concentrated on

BM( p), we first notice that Cr & M> are nonempty, T compact, and S
invariant for every r>$( p, M). Therefore their intersections form a non-
empty, T compact, and S invariant subset of BM( p). Now it is enough to
repeat the arguments from the above. K
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The next result is a two-fold generalization of Theorem 4.2 from [2].
We eliminate linearity assumptions imposed on T and I and also extend
Al-Thagafi's results to more general (nonmonothetic) semigroups.

Theorem 4. Let M be a T closed convex subset of a Banach space
(X, & }&, T) and S=[Ts : s # S] be a nonexpansive and T continuous
antirepresentation of S on M. Suppose that for some s0 # S the set
M>=Ts0

(M)T is T compact, norm separable, and Ts b Tt(x)=Tt b Ts(x)
holds for all s, t # S and all x # M> . Then F(S, BM( p)){<.

Proof. It has already been noticed that BM( p){< is convex, T closed,
and S invariant. Let K be the family of all T closed, convex nonempty
subsets K of BM( p) which are S invariant. It follows from the T compact-
ness of M> & BM( p) that Kuratowski�Zorn's Lemma is applicable and
therefore there exists a minimal element K0 in K. In the same way as in
the proof of Theorem 1 in [4], we obtain that <{F(S> , BM( p)) % x0 .
Now if s # S is arbitrary, then

Tsx0=Ts b Ts0
x0=Ts0

b Ts x0=Tss0
x0=x0 .

In particular F(S, BM( p))=F(S> , BM( p)){<. K

The following result provides an explicit answer to the question raised in
[2]. Here T is the norm topology. Because the commutativity always
guarantees amenability (even if the topology on S> is discrete), we thus
deal actually with a ``discrete _ norm'' continuous antirepresentation on
M> . In particular, all conditions of Theorem 4 are fulfilled. We have:

Corollary. Let M be a closed, convex subset of a Banach space
(X, & }&) containing the zero vector, p # X"M, and let S=[Ts : s # S] be a
nonexpansive antirepresentation of a (discrete) semigroup S on M _ [ p]
such that p # F(S). If there exists s0 # S such that M>=Ts0

(Mp)& }& is norm
compact and Tt b Ts(x)=Ts b Tt(x) holds for all s, t # S and x # M> , then

(i) BM( p){< is closed, convex and S invariant,

(ii) F(S, BM( p)){<.

Proof. (i) is a part of our Theorem 2 and (ii) follows from
Theorem 4. K

Linearity conditions imposed on I and T in [2] guarantee that the
action of the semigroup generated by mappings I, T is affine. Hence it is
weakly continuous. We show that the linearity condition imposed on T in
Theorem 1(b) may be replaced by weak continuity. We have:
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Theorem 5. Let (X, & }&) be a Banach space, 0 # M be a convex and
norm closed subset of X, p # X"M, and S=[Ts : s # S] be a weakly con-
tinuous, nonexpansive antirepresentation of a (discrete) semigroup S on
M _ [ p] such that p is a common fixed pont. Suppose that for some s0 # S
we have

(a) Ts0 is affine on Mp ,

(b) Ts0
(Mp)w=M> is weakly compact,

(c) Ts b Tt(x)=Tt b Ts(x) holds for all s, t # S and x # M> .

Then

(i) <{BM( p) is closed and convex,

(ii) Ts(BM( p))�BM( p) for every s # S,

(iii) F(S, BM( p)){<.

Proof. (i) can be proved in a similar way as in Theorem 2 and (ii)
follows from nonexpansiveness. To prove (iii), we again introduce the semi-
group S>=[ss0 : s # S] _ [s0]. The weakly compact set M> is S-invariant
and the corresponding antirepresentation S0 restricted to M> is com-
mutative. The same properties are enjoyed by the S-invariant subset
K=Ts0

(BM( p))w�M> which is convex as Ts0
is affine. It follows from

Lemma 1 that the set K has a S> common fixed point x0 . By an analogous
argument as we have used in the proof of Theorem 3, we obtain

Tsx0=Ts b Ts0
x0=Ts0

b Ts x0=Tss0
x0=x0

for all s # S. In particular F(S, BM( p))=F(S> , BM( p)){<. K

Remark 4. Finally we want to emphasize that in the last theorem we
do not need to assume the norm separability of M> . A detailed explanation
can be found in the last few paragraphs of [4]. It also follows from [4]
that Theorem 5 has its ``weak* version.'' However, in this case the norm
separability of M> has to be restored. It is still an open question (see [4]
Problem) whether the norm separability condition is essential in Lemma 1
(#) if T is the weak* topology.
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